首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1598篇
  免费   450篇
  国内免费   963篇
测绘学   39篇
大气科学   2079篇
地球物理   164篇
地质学   256篇
海洋学   61篇
天文学   2篇
综合类   67篇
自然地理   343篇
  2024年   10篇
  2023年   34篇
  2022年   66篇
  2021年   85篇
  2020年   84篇
  2019年   110篇
  2018年   85篇
  2017年   68篇
  2016年   69篇
  2015年   102篇
  2014年   140篇
  2013年   132篇
  2012年   137篇
  2011年   150篇
  2010年   128篇
  2009年   131篇
  2008年   179篇
  2007年   145篇
  2006年   150篇
  2005年   147篇
  2004年   115篇
  2003年   97篇
  2002年   76篇
  2001年   82篇
  2000年   71篇
  1999年   69篇
  1998年   51篇
  1997年   59篇
  1996年   59篇
  1995年   44篇
  1994年   33篇
  1993年   35篇
  1992年   13篇
  1991年   15篇
  1990年   6篇
  1989年   13篇
  1988年   11篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1978年   1篇
排序方式: 共有3011条查询结果,搜索用时 611 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
山区公路软基病害研究   总被引:2,自引:0,他引:2  
随着高等级公路建设规模的扩大,山区公路所面临的路基病害特别是软土路基病害问题也逐渐增多。结合对陕南勉(县)一宁(强)高速公路工程实例分析,对山区软土成因及其特性进行了初步分析,认为山区软土属以坡洪积、湖积和冲积为主的软土,也有少量是由坡残积物堆积而形成。山区软土的特殊性表现在成分的复杂性、分布的不均匀性、隐蔽性和物理力学性质的特殊性。根据其特性以及中国山区公路软基普遍存在的病害问题,总结了山区公路软基的主要病害类型为剪切拉裂破坏、浸水沉陷破坏、剥蚀坍塌破坏、推挤滑动破坏。还提出了相应的软基处理方法及建议。  相似文献   
3.
Infiltration experiments have been performed at three sites along a well-known catena under virgin tropical rain forest using a portable sprinkling infiltrometer. Experimentally determined infiltration curves are presented. Infiltration curves are also simulated on the basis of the Mein-Larson equation. The parameters for this model have been obtained from the infiltration curves (saturated conductivity) and simple soil moisture determinations (fillable porosity). The agreement between experimentally determined and modelled infiltration is reasonable, provided (a) saturated conductivity as derived from the experimental data is corrected, (b) a storage parameter, also derived from the experimental data, is added to the Mein-Larson model, and (c) the decline in soil porosity with depth is either small or occurs abruptly at shallow depth. Comparison of observed infiltration rates with rainfall intensity shows that Horton Overland Flow has to occur naturally at least on the middle and lower section of the catena. Despite the fact that most parameters can be estimated in principle from basic soil data, it remains advisable to obtain sprinkling infiltrometer field measurements, because of soil variability due to dynamic surface conditions, macroporosity, air entrapment, and irregularity of the wetting front.  相似文献   
4.
To evaluate the contribution of biogeochemical processes to the oceanic carbon cycle and to calculate the ratio of calcium carbonate to organic carbon downward export, we have incorporated biological and alkalinity pumps in the yoked high-latitude exchange/interior diffusion-advection (YOLDA) model. The biogeochemical processes are represented by four parameters. The values of the parameters are tuned so that the model can reproduce the observed phosphate and alkalinity distributions in each oceanic region. The sensitivity of the model to the biogeochemical parameters shows that biological production rates in the euphotic zone and decomposition depths of particulate matters significantly influence horizontal and vertical distributions of biogeochemical substances. The modeled vertical fluxes of particulate organic phosphorus and calcium carbonate are converted to vertical carbon fluxes by the biological pump and the alkalinity pump, respectively. The downward carbon flux from the surface layer to the deep layer in the entire region is estimated to be 3.36 PgC/yr, which consists of 2.93 PgC/yr from the biological pump and 0.43 PgC/yr from the alkalinity pump, which is consistent with previous studies. The modeled rain ratio is higher with depth and higher in the Pacific and Indian Oceans than in the Atlantic Ocean. The global rain ratio at the surface layer is calculated to be 0.14 to 0.15. This value lies between the lower and higher ends of the previous estimates, which range widely from 0.05 to 0.25. This study indicates that the rain ratio is unlikely to be higher than 0.15, at least in the surface waters.  相似文献   
5.
Atmospheric forcing of the eastern tropical Pacific: A review   总被引:1,自引:8,他引:1  
The increase in marine, land surface, atmospheric and satellite data during recent decades has led to an improved understanding of the air–sea interaction processes in the eastern tropical Pacific. This is also thanks to extensive diagnoses from conceptual and coupled ocean–atmosphere numerical models. In this paper, mean fields of atmospheric variables, such as incoming solar radiation, sea level pressure, winds, wind stress curl, precipitation, evaporation, and surface energy fluxes, are derived from global atmospheric data sets in order to examine the dominant features of the low level atmospheric circulations of the region. The seasonal march of the atmospheric circulations is presented to depict the role of radiative forcing on atmospheric perturbations, especially those dominating the atmosphere at low levels.In the tropics, the trade winds constitute an important north–south energy and moisture exchange mechanism (as part of the low level branch of the Hadley circulation), that determines to a large extent the precipitation distribution in the region, i.e., that associated with the Inter-Tropical Convergence Zone (ITCZ). Monsoonal circulations also play an important role in determining the warm season precipitation distribution over the eastern tropical Pacific through a large variety of air–sea–land interaction mechanisms. Westward traveling waves, tropical cyclones, low latitude cold air intrusions, and other synoptic and mesoscale perturbations associated with the ITCZ are also important elements that modulate the annual rainfall cycle. The low-level jets of the Gulf of California, the Intra-Americas Sea (Gulf of Mexico and Caribbean Sea) and Chocó, Colombia are prominent features of the eastern tropical Pacific low-level circulations related to sub-regional and regional scale precipitation patterns. Observations show that the Intra-Americas Low-Level Jet intensity varies with El Niño/Southern Oscillation (ENSO) phases, however its origin and role in the westward propagation and development of disturbances that may hit the eastern tropical Pacific, such as easterly waves and tropical cyclones, are still unclear. Changes in the intensity of the trade winds in the Caribbean Sea and the Gulf of Mexico (associated with eastern tropical Pacific wind jets) exert an important control on precipitation by means of wind–topography interactions. Gaps in the mountains of southern Mexico and Central America allow strong wind jets to pass over the continent imprinting a unique signal in sea surface temperatures and ocean dynamics of the eastern tropical Pacific.The warm pools of the Americas constitute an important source of moisture for the North American Monsoon System. The northeastern tropical Pacific is a region of intense cyclogenetic activity, just west of the coast of Mesoamerica. Over the oceanic regions, large-scale properties of key variables such as precipitation, moisture, surface energy fluxes and wind stress curl are still uncertain, which inhibits a more comprehensive view of the region and stresses the importance of regional field experiments. Progress has been substantial in the understanding of the ocean and atmospheric dynamics of the eastern tropical Pacific, however, recent observational evidence such as that of a shallow meridional circulation cell in that region, in contrast to the classic concept of the Hadley-type deep meridional circulation, suggests that more in situ observations to validate theories are still necessary.This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific Ocean.  相似文献   
6.
本文通过计算和对比分析,得到1991年春、夏江淮地区特大暴雨形成的五个基本特征:西北太平洋上副高显著偏西、偏北;较弱的西南季风与东南气流汇合成强西南气流伸向江淮地区;偏东风与强西南风形成的辐合带在江淮地区维持;江淮地区对流层中下部为强上升运动、上部为辐散;130°E附近南半球向北半球的较强越赤道气流持续。  相似文献   
7.
Validation of Jason and Envisat Altimeter Dual Frequency Rain Flags   总被引:1,自引:0,他引:1  
New rain flags based on the dual frequency capabilities of the new Jason Poseidon-2 and Envisat RA2 altimeters have been tested, developed and adopted for the operational processing of the altimeter data. Their validation conducted during the calibration/validation phases of the satellites is presented here. The Jason flag is validated by comparison with the TOPEX one, using the Tandem mission. The results show a very good agreement between the two sensors and the two rain flags The Envisat flag is validated by comparison with both Jason and TOPEX using global and collocated data sets. The results show similar performances for the three sensors. The f relations estimated during the calibration-validation period and presented here have been given to the altimeter ground processing facilities for operational use.  相似文献   
8.
彭荔红  洪丽玉 《台湾海峡》1995,14(4):334-337
本文综述了国内外酸雨的研究现状;包括酸雨的来源、成因、模式、影响及防治对策;介绍了酸雨的研究趋势;并着重就厦门地区今后酸雨的研究方向提出也作者的看法。  相似文献   
9.
模拟酸雨及施磷对水稻土中铅的淋溶特性影响   总被引:1,自引:1,他引:0  
采用pH=3.0、pH=4.5与对照pH=5.6的3种模拟酸雨淋溶土柱的方法,研究酸雨及含磷酸雨淋溶下合肥市郊水稻土中铅的释放特征与规律。结果表明:经过相当于1 980 mm降水量的淋溶后,铅释放量总体上表现为随着酸雨强度增加累积淋溶量也增加的现象。酸雨作用下,施磷量越多土壤中铅的淋失总量越大。在酸雨及施磷条件下,大兴地区黄褐土中Pb较义城地区水稻土中易于淋失。  相似文献   
10.
Studies on rain-runoff process in the peripheral mountainous area of the Sichuan Basin, which is regarded as a key ecological shelter, will contribute to flood control and environmental protection for the Upper Yangtze River Basin. In two typical catchments--the Fujiang River Catchment and the Wujiang River Catchment, rainfall simulations have been conducted to study the rain-runoff processes of yellow soil and limestone soil in three types of land use--forestland, farmland and grassland. Results showed that (1) within the same rainfall process, overland flow occurs first on farmland, then on grassland, and finally on forestland; (2) soil surface coverage has a great impact on the occurrence and amount of overland flow. The runoff amount can increase 2-4 times after the coverage is removed; (3) the infiltration before the occurrence of overland flow will decrease because of higher gravel contents of soil, but it takes no effect on infiltration once overland flow becomes stable; (4) the runoff coefficient of the limestone soil forestland is greater than that of the yellow soil forest land, but less than that of the farmland; (5) three empirical infiltration models, including Horton' model, Kostiakov' model, and modified Kostiakov' model, were compared by using the observed results under rainfall simulation. The results showed that the Kostiakov' model performed better than both the Horton' model and modified Kostiakov model. According to the results of this research, the Kostiakov's model can be used to simulate rainfall infiltration when water erosion is modeled in the peripheral mountainous area of the Sichuan Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号